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We have implemented and tested a frozen density matrix (FDM) approximation to the basic divide and conquer
(DC) semiempirical algorithm. Molecular dynamics and Monte Carlo simulations were performed to estimate
the advantages of the method. Results were compared to those obtained from the original DC method and the
combined quantum mechanical/molecular mechanical (QM/MM) method. We found that the FDM approxima-
tion speeds DC calculations up significantly, while only introducing small errors. We also found that the
FDM DC scheme performs better that the standard QM/MM approach in terms of defining the electronic and
structural properties of the systems studied herein.

Introduction

Quantum mechanical methodologies have proven to be
extremely powerful in furthering our understanding of molecular
systems ranging from small organic molecules to moderately
sized biologically relevant molecules.1-3 However, with current
generation methodologies it has been very difficult to study
larger systems using “fully” quantum mechanical approaches
due to computational bottlenecks that scale with the third power
of the number of orbitals or even higher.1-3 This realization
has led to the rapid development of linear-scaling quantum
mechanical methodologies and their application to semiempiri-
cal, density functional or Hartree-Fock based Hamiltonians.4-8

Recently a semiempirical molecular orbital method that scales
linearly with the number of orbitals was developed in our lab.9,10

This density matrix based divide and conquer (DC) method4

divides the system into subsystems which overlap, thereby
allowing for electronic information to be exchanged between
the subsystems. This particular division brings the density
matrix, describing the electron distribution of the system, into
a blocklike form with information for a given subsystem
concentrated around the diagonal. Physically, this corresponds
to a neglect of bonding between pairs of atoms that never appear
in the same subsystem. Division of the system into subsystems
has two computational advantages. Instead of one large matrix,
a number of small matrices need to be diagonalized, decreasing
the overall order of the calculation fromN3 to ∼N, with N being
the number of orbitals. The second advantage is the inherent
parallel nature of the DC method. Parallelization of our DC
program has been successfully performed, increasing the
computation speed significantly.11

Our DC method has been tested on a large number of systems
giving results virtually within the same accuracy of standard
semiempirical methods at only a fraction of the computational
expense.9-11 Since the DC method scales only linearly with the
number of orbitals, QM calculations of large systems have
become feasible. Still, the expense of a DC calculation is too
great to do dynamical studies of large systems within a
reasonable time period.

In this work we present a method which combines the DC
method with a frozen density matrix (FDM) approximation12-15

in order to make calculations on large molecules more com-

putationally efficient, while still retaining a full QM representa-
tion. The FDM approximation exploits the 'fact that in most
molecular simulations high accuracy or a high update frequency
is only needed for a small “active” part of the system.16 For
example, this could be the active site of a protein or regions of
relatively fast dynamics within a system. The Fock matrix of
this part of the system is built and diagonalized at every step,
thereby generating a new density matrix, while the rest of the
system can be handled with less accuracy or with a lower update
frequency using a previously evaluated density matrix. The
FDM-DC approach highlights an advantage DC has over other
linear-scaling semiempirical approaches:7,17 since DC divides
the system into a series of subsystems, the FDM approach is
relatively easy to implement into the DC framework, while with
other approaches it might not be as easy to implement in a
general way.

An alternative to this FDM-DC method is the combined
quantum mechanical molecular mechanical (QM/MM)
approach18-23 in which the fast or high-accuracy part of the
system is treated with a QM method, while the remaining part
is treated with classical mechanics. Recently, this method has
been successfully applied by a number of research groups
worldwide;18-23 however, the quantum mechanical nature of the
FDM-DC method has significant advantages over the classical
representation used for the MM region in QM/MM simulations.
Important phenomena like charge fluctuations, polarization, and
charge transfer, which are not dealt with easily by classical
methods, are included in a natural manner in our FDM-DC
calculations. Moreover, difficulties with defining the quantum/
classical boundary through the use with “link” atoms21 can be
either eliminated or partially mitigated by moving the link atom-
(s) further away from the region where high accuracy is desired.
The downside, of course, is the memory requirements (i.e., one
must store the coefficient matrix and eigenvalues for each frozen
subsystem) of the FDM-DC approach. However, with ever larger
capacity machines becoming generally available, this is only a
minor consideration in the long run.

In this work we have examined the FDM-DC algorithm for
two common types of simulations. We have performed short
molecular dynamics simulations on l-N-acetyloctaalanine-N-
methylamide in theR-helical conformation, and we have
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performed Monte Carlo simulations on a “box” of 64 water
molecules. In the next sections we briefly outline the formalism
of the FDM-DC approach and we then describe the results of
the MD and MC simulations.

Theoretical Background

The DC method4,9,10divides a molecular system into overlap-
ping subsystems. For each of these subsystems,R, the localized
Roothaan-Hall equation (here given as the semiempirical
formulation, i.e., the overlap matrix is the identity matrix)

is solved; whereCR is the subsystem coefficient matrix,FR the
subsystem Fock matrix, andER the diagonal matrix of orbital
energies for subsystemR. The local density matrix for subsystem
R is built from the local coefficient vector:

where NR is the number of orbitals in subsystemR and the
factors ni

R are occupation numbers which depend on the
molecular orbital energyεi

R and the Fermi energyεF which is
determined iteratively subject to the constraint that the total
number of electrons in the system is conserved.

The local Fock matrix is built from the global Fock matrix
according to

The global Fock matrix is constructed from the one-electron
matrix Hµν, the two-electron integrals (µν/λσ) and (µσ/λν) and
the global density matrixPµν:

Every subsystem consists of a core surrounded by two buffer
layers.10 The function of these buffer regions is to determine
what information from the local density matrices should be used
to build the global density matrix:

The most expensive step in this process is solution of the
localized Roothaan-Hall equations (see eq 1) for each of the
subsystems contained in the system of interest. This set of
equations is solved in an iterative way until self-consistency is
reached and whenever the system is altered in any way (i.e.,
the molecular geometry is changed). The coefficient matrix will

change during this calculation, which reflects the adaptation of
the wave function to the change in molecular coordinates.

In the FDM approximation it is assumed that the wave
function is constant in those regions of the system that were
not affected by the perturbation. This means that the coefficient
matrix of those “frozen” subsystems can be held constant during
the perturbation, making the computationally expensive reevalu-
ation of eq 1 superfluous for these subsystems. Since the
coefficient vectors of the frozen subsystems need to be stored,
the FDM approximation increases memory usage significantly.
However, storage of the eigenvectors also allows us to determine
the Fermi energy directly at every iteration step.9,10 Another
important feature of the redetermination of the Fermi energy
(and, hence, the subsystem molecular orbital occupation num-
bers, see eq 3) at every step of a FDM-DC calculation is that it
allows electron density to flow from a frozen to a nonfrozen
region (or vice versa). The effect of this is clearly illustrated in
Figures 4 and 5 discussed in detail below. This nice feature
allows for a much more realistic representation of the boundary
region between frozen and nonfrozen subsystems as opposed
to how this region is handled in the QM/MM approach, for
example.

Computational Procedure

First, we tested the FDM-DC method with short molecular
dynamics (MD) simulations ofR-helical 1-N-acetyloctaalanine-
N-methylamide. We divided this molecule into three parts (see
Figure 1): The middle region of the molecule was treated as
frozen, while the ends of the helix were considered to be the
active part of the system. The Fock matrix of the active part
was updated at every step of the MD simulation. The Fock
matrix of the frozen part of the molecule was updated only once
every 10-30 steps. All calculations were performed with the
PM3 semiempirical Hamiltonian.24-26 In contrast with other
implementations of the FDM approximation,12,13 the frozen
region in our calculations does not necessarily have to have
fixed coordinates. We performed two different series of runs:
In one case the coordinates of the frozen part were fixed and in
the other the whole molecule was allowed to move.

All simulations started from the PM3 minimized-structure
and the length of each MD run was 0.1 ps, using a time step of
0.1 fs. A short time step was used to ensure that the trajectories

Figure 1. 1-N-Acetyloctaalanine-N-methylamide molecule, divided into
frozen and active parts. The active part is treated with the PM3
semiempirical quantum mechanical method. The way in which the
energy and forces of the frozen part are calculated depends on the
method used. They are treated fully quantum mechanically, quantum
mechanically but the density matrix is updated every few MD steps,
or as a molecular mechanical region entirely in a QM/MM calculation.
Moreover, the coordinates of the frozen region are either fixed or
allowed to move. See the text for further details.
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were completely stable so that we could accurately compare
the simulations among one another. Longer time steps (0.5 and
1 fs) produced trajectories that were not stable enough to allow
for a detailed analysis of the trajectories for both the DC and
FDM-DC simulations. Constant temperature (300 K) was
maintained with the Nose´-Hoover chain algorithm.27 For our
simulations we coupled our DC program (DivCon)9,10 with the
molecular dynamics package ROAR 1.0.28 This program will
be released in the future as ROAR 2.0.29 We carried out fully
QM (DC) and FDM-DC MD simulations and the same set of
simulations were performed using the QM/MM approach.30 At
every time step, gradients and energies of the QM subsystem
were calculated with the DC method (DivCon) using the PM3
Hamiltonian. Gradients and energies of the MM subsystem were
calculated with the AMBER force field.31 Interactions between
QM and MM atoms consist of the attraction of the MM atom
“cores” with the electron cloud of the QM atoms and repulsion
between the MM and QM cores. As usual a Lennard-Jones term
was also added to obtain better accuracy.30 Here we treated the
middle region of the molecule, which was frozen in our FDM-
DC calculations, as the MM system, while the rest of the
molecule was treated quantum mechanically. The link atom
approach21 was used to connect the QM and MM regions to
one another as is typical practice.30,32 These link atoms were
located along QM/MM bonds and were treated as QM hydrogen
atoms. They are invisible to the MM atoms and no interactions
between the link atoms and the MM atoms were calculated.
Both the FDM-DC and QM/MM results were compared to the
fully QM (DC) calculations.

As an another test of the FDM-DC method we performed
short DC Monte Carlo (MC) simulations on a box of water
molecules (64 water molecules total). In these simulations the
system is evolved by the Metropolis scheme33,34 with freedom
of translation and rotation. Since our main goal here was to
establish how a FDM approximation affects the computation
time and accuracy of a DC Monte Carlo simulation, only short
simulations were performed (Table 1). Sampling was clearly
not enough to assess thermodynamic or other system properties.
In a forthcoming publication we will describe converged DC
Monte Carlo runs of liquid water using a modified semiempirical
Hamiltonian.35

Our system consisted of 64 water molecules fixed at the PM3-
optimized gas phase geometry in a cubic box of 13.481×

13.481× 13.481 Å. Periodic boundary conditions were in effect,
and the particle mesh Ewald method36 was used to treat the
long-range electrostatic interactions. In our implementation, this
long-range contribution was obtained as a sum of the direct and
reciprocal energy, minus the classical Coulomb interactions of
the CM1 charges.37 The NPT ensemble with a temperature of
298.15 K and pressure of 1 bar was simulated and the subsetting
(i.e., obtaining new subsystems that reflect the new coordinates
of the box of waters) was redone every 10th cycle. The
maximum allowed translation was 0.05 Å, the maximum
allowed rotation was 7.5 deg, and the maximum change in the
box dimensions was 0.05 Å. All calculations were done with
the PM3 Hamiltonian.

In our simulations, a change of the box volume and the
corresponding scaling of the coordinates was performed after
all the molecules had been rotated and translated. These rotations
and translations were done in a number of steps, each step only
perturbing a part of the system. Since only a part of the system
changes at these rotation/translation steps, the calculation can
be sped up by the FDM approximation, as illustrated in Figure
2. At every step only the perturbed subsystems are rediagonal-
ized. If stepn is rejected, the system is reset to then - 1
configuration before then + 1 configuration is generated. In
this case the eigenvectors and eigenvalues of the subsystems
that were perturbed in stepn also have to be recovered in step

TABLE 1: Number of Cycles and Translation/Rotation
Steps Used in the Non-FDM and FDM MC Simulation To
Obtain the Speed-Ups

no. of cyclesa no. of steps

n/sb non-FDM FDM non-FDM FDM

n ) l 2 19 128 1216
n ) 2 2 39 64 1248
n ) 4 4 59 64 944
n ) 6 5 79 55 869
n ) 8 8 99 64 792
n ) 16 17 119 68 476
n ) 32 35 139 70 278
s ) l 2 29 66 957
s ) 2 4 59 68 1003
s ) 3 5 29 55 319
s ) 4 8 39 72 321
s ) 8 17 39 85 185
s ) 16 35 39 105 87

a The number of cycles with omission of the first, initialization cycle.
One (1) cycle is when every molecule has been perturbed once.b The
number of molecules perturbed per step in the molecule-wise method
(n), or the number of subsystems perturbed per step in the subsystem-
wise method (s).

Figure 2. At every step in a FDM-DC Monte Carlo simulation a full
diagonalization is only performed on the subsystems that change. Step
l.l.a represents the system after a full diagonalization (initial configu-
ration or after volume perturbation). In step 1.l.b, a number of random
residues are selected that will be rotated/translated. The subsystem(s)
in which these residues are located are indicated by the small gray
box. These systems will be fully diagonalized, and all the others will
be kept constant (frozen). If this configuration is rejected (indicated
by R) in step 1.2.a, the molecules in these subsystems will be reset
and a full diagonalization of these subsystems is required in step 1.2.b,
since the old eigenvectors and eigenvalues were discarded to save on
memory. This rediagonalization is not necessary if the configuration
was accepted (indicated by A). In step 1.2.b a new group of random
residues is selected, and the process is repeated. In step 2.1.b a volume
perturbation is performed, after which every subsystem needs to be
diagonalized. Finally, in step 2.2 the whole process is repeated. Further
details are given in the text.
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n + 1 since they were discarded to form stepn + 1 (i.e., the
old eigenvectors and eigenvalues were discarded to save on
memory). We rediagonalize these subsystems in the same step,
in order to save computation time. This means that the number
of frozen subsystems decreases after a configuration has been
rejected.

We tested two different FDM-MC-DC strategies. In the first,
“moleculewise” method, the perturbations were performed on
randomly selected molecules. Only subsystems with the per-
turbed molecules in the core of the subsystem were rediago-
nalized. We also tested a “subsystemwise” strategy in which a
perturbation was not performed on random molecules but rather
on the core molecules of randomly selected subsystems.

Speedups were obtained by performing short FDM-DC and
non-FDM-DC MC simulations starting from the same initial
configuration By the very nature of MC, these FDM-DC and
non-FDM-DC trajectories may be very different. Since the
FDM-DC calculation will give a (slightly) different electronic
energy than the non-FDM-DC calculation, a configuration that
is rejected in the non-FDM-DC run might be accepted in the
FDM-DC run, and vice versa. Since subsequent configurations
were generated by random translations/rotations, completely
different trajectories may arise even though the differences
between the FDM-DC and non-FDM-DC energies at the initial
configuration was very small. We therefore performed another
set of simulations to estimate the accuracy of the FDM
approximation in our MC runs.

To estimate the accuracy of the FDM approximation in our
MC simulations, we calculated the differences in electronic
energy between FDM-DC and non-FDM-DC calculations at
every rotation/translation step of sample simulations. For every
configurationn, we first performed a FDM-DC calculation and
then a non-FDM-DC calculation on the same configuration to
obtain the difference in electronic energy. The energy difference
between the non-FDM-DC energies of configurationn and n
- 1 was subsequently used to accept or reject configurationn.
We saved either all the non-FDM-DC eigenvectors and eigen-
values of configurationn if configuration n was accepted, or
we recovered the non-FDM-DC eigenvectors and eigenvalues
of configurationn - 1 if configurationn was rejected. These
saved eigenvalues and eigenvectors were subsequently used for
the frozen subsystems of the FDM-DC calculation of the next
configuration n + 1. In this way, FDM-DC energies were
obtained in a consistent manner, i.e., not depending on either
acceptance or rejection of the previously generated configura-
tion. Other than in the speedup runs, the percentage of frozen
subsystems will remain constant during the energy-comparison
runs and will not decrease when a configuration is rejected.
Our error analysis, therefore, identifies themaximumerror.

Results and Discussion

Molecular Dynamics of r-Helical 1-N-Acetyloctaalanine-
N-methylamide. We performed two different sets of simula-
tions. In the first case the coordinates of the frozen part of the
molecule were fixed. Figure 3 shows the potential energy during
the simulation for the DC (bold line), FDM-DC (solid line),
and QM/MM (dashed line) methods. The Fock matrix of the
frozen region was updated every 10 steps. The potential energy
given by the FDM-DC approach tracks closely to the energy
obtained by the DC calculations. The FDM-DC method also
allows us to observe charge fluctuations between different
regions (i.e., subsystems) of the molecule. Figures 4 and 5 show
typical charge (Coulson) fluctuations for a region of the
molecule when using DC (bold line), FDM-DC (solid line) and

QM/MM (dashed line) methods. The FDM-DC approach
realistically allows for charge changes in the frozen part of the
molecule (Figure 4) and it also makes the charge distribution
in the active part (Figure 5) more accurate, compared to the
standard QM/MM method with a link atom.

We performed the same FDM-DC simulation where we
updated the Fock matrix of the frozen region only once every
30 steps. Figure 6 (dashed line) shows the potential energy
versus time for this case and the potential energy obtained from
the DC simulation is shown by the bold line. The error
introduced by the FDM approximation can be observed as sharp
regular peaks on the plot with amplitudes close in magnitude
to the amplitudes of the natural energy fluctuations observed at
the full QM level. This means that the updating for this system
is too infrequent and should not be used for simulations in which
better accuracy is desired. Moreover, updating every 30 time
steps only marginally speeds up the FDM-DC calculation (see
Table 2 below).

Figure 3. Potential energy of the 1-N-acetyloctaalanine-N-methylamide
R-helix during molecular dynamics simulations. The atomic coordinates
of the frozen part were fixed. The simulations were done using DC
(bold line), FDM-DC with a density matrix update frequency of 10
steps (solid line), and QM/MM (dashed line) methods.

Figure 4. Charge fluctuations on the sixth Ala residue during a
molecular dynamics simulation of the 1-N-acetyloctaalanine-N-methyl-
amideR-helix. This amino acid is located in the frozen region of the
molecule. The simulations were done using DC (bold line), FDM-DC
(solid line), and QM/MM (dashed line) methods. The atomic coordinates
of the frozen part were fixed.
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We also performed a simulation in which the update
frequency was a function of the distance of the frozen region
from the active region. The results of such a dual updating
scheme are shown by the solid line in Figure 6. We updated
the density matrix for the two central alanine amino acids every
30 steps and the rest of the frozen subsystem every 10 steps.
The results are better than updating every 30 steps for all of
the frozen subsystems, which suggests that this is a potentially
useful way in which to proceed. However, the small size of
this test system does not allow us to assess how well it might
work in much larger systems where its use might be quite
advantageous. Nonetheless, we expect that a multiple frequency
update strategy will prove to give significant advantages for
big systems such as proteins.

Results for the set of simulations in which all atoms were
allowed to move were similar to the ones in which the

coordinates of the frozen region were fixed. Surprisingly,
though, the results obtained by the DC and FDM-DC methods
in this case are in even better accord. Moreover, the update
frequency of the density matrix for the frozen subsystem could
be lowered without severely affecting the accuracy. For example,
updating the frozen density matrix every 30 steps (Figure 7,
solid line) results in the potential energy being rather close to
that obtained from the full DC calculations (Figure 7, bold line).

The CPU times of our simulations are shown in Table 2. We
expected that a frozen density update frequency of once every
n steps should give a speed-up ofn in the part of the calculation
involving the frozen subsystems. Our observed speed-ups are
quite close to those calculated theoretically based on this criteria.
The reason for a slightly lower speed-up (up to 2%) is a slight
increase in the number of diagonalization steps needed in the
FDM calculation in order to reach convergence. Another
important aspect of the data in Table 2 is the observation that
the speed-up on going from updating every 10 steps to 30 steps
is quite minimal. This suggests that updating every 10 steps is
the best compromise in terms of accuracy and in terms of overall
speed up of the calculation.

From this study we also observe that the QM/MM method is
deficient in terms of accurately defining the electronic charac-

Figure 5. Charge fluctuations on the seventh Ala residue during a
molecular dynamics simulation of the 1-N-acetyloctaalanine-N-methyl-
amideR-helix. This amino acid is located in the active region of the
molecule. The simulations were done using DC (bold line), FDM-DC
(solid line) and QM/MM (dashed line) methods. The atomic coordinates
of the frozen part were fixed.

Figure 6. Potential energy of the 1-N-acetyloctaalanine-N-methylamide
R-helix during a molecular dynamics simulation. The atomic coordinates
of the frozen part were fixed. The simulations were done using FDM-
DC with a density matrix update frequency of 30 steps (dashed line)
and FDM-DC with dual updating (30 steps for Ala 4 and5 and 10
steps for Ala 3 and 6, solid line) methods. The potential energy-time
dependence from the DC simulation is indicated by the bold line.

Figure 7. Potential energy of the 1-N-acetyloctaalanine-N-methylamide
R-helix during a molecular dynamics simulation. All atoms of the
molecule were allowed to move. The simulations were done using DC
(bold line), FDM-DC with a density matrix update frequency of 30
steps (solid line), and QM/MM (dashed line) methods.

TABLE 2: CPU Times for MD Runs Using DC and
FDM-DC Methods

method
frozen

coordinates
update

frequency CPU (h)
theoreticala

CPU (h)

DC fixed 1 6.76
FDM-DC fixed 10 3.20 3.14
FDM-DC fixed 20 2.94 2.95
FDM-DC fixed 30 2.89 2.88
DC updated 1 6.72
FDM-DC updated 10 3.16 3.13
FDM-DC updated 20 2.98 2.93
FDM-DC updated 30 2.93 2.87

a Estimation of the theoretical CPU times was done by determining
that (1) for this system the Fock matrix build step takes 11% of the
total CPU time and (2) the Fock matrix diagonalizations for the middle
four subsystems takes 67% of the remaining CPU time. We determined
from timings of the subsystem diagonalization steps that the central
four residues take 67% of the diagonalization time due to the fact that
the central subsystems Fock matrices are larger than the end ones. All
timings were done on a SGI Origin 200.
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teristics of this model system. For example, the charge fluctua-
tion between residues as a function of time is not captured and
we also find that charge is built up at the QM/MM boundary
(see Figures 4 and 5). Thus, we conclude that when one carries
out a QM/MM simulation the boundary between the QM and
MM region should be as far away as possible from the regions
where the highest accuracy is required. Moreover, the FDM-
DC approach could further alleviate this link-atom problem by
allowing one to move the QM-MM linking region further away
from the region where the highest accuracy is required.

Monte Carlo Simulations of 64 Water Molecules.We
performed all Monte Carlo simulations using an automated
subsetting algorithm that generated subsystems which had a core
that consisted of two neighboring water molecules and one
buffer region of 5.5 Å. A single buffer region was used in this
case (instead of our usual dual buffering approach10) because
this approach gave the best energies and performance in test
calculations than all other schemes we tried. Note that all buffer-
core cross terms were included in this scheme (i.e., the buffer
region here is like our standard buffer region 110). For all
configurations, this resulted in a total of 33 subsystems. Energy
evaluations of a number of randomly selected snap shots showed
that the DC energies of these 64 water molecule configurations
were within 0.2 kcal of non-DC (i.e., standard diagonalization
scheme) calculations. Since all molecules were perturbed when
the volume was adjusted, the FDM approximation could not
be used for these steps. Thus, no speed-up can be achieved for
these steps.

Errors in the electronic energy as introduced by the FDM
approximation are listed in Table 3. For the Monte Carlo method
in which randomly selected molecules are perturbed, average
unsigned errors are smaller than 0.31 kcal/mol and the maximum
unsigned errors are smaller than 1.9 kcal/mol for the 64-water
system. Moreover, for all simulations the error in the electronic
energy is belowkT for ∼90% of the configurations. Errors for
the subsystem-wise Monte Carlo simulations are also listed in
Table 3. For perturbations on a small number of subsystems
per step (1-3 subsystems), these errors are only slightly larger
than the errors in the molecule-wise runs in which a small
number of molecules (1-6) were perturbed. Errors increased
when more subsystems were perturbed per step. For simulations
in which 8 subsystems were perturbed, the maximum unsigned

error is 3.3 kcal/mol with 90% of the configurations having an
error under 1.8 kcal/mol. For the run in which 16 subsystems
were perturbed per step, these values are 3.0 and 2.2 kcal/mol,
respectively.

Errors in the FDM-DC approximation are a complicated
function of the number of molecules that were perturbed and
the percentage of subsystems that were treated frozen. Since
the chance is high that randomly picked molecules do not all
belong to the same subsystems, the percentage of frozen
subsystems is higher in the subsystem-wise method than in the
molecule-wise method at the same number of rotation/translation
steps per cycle (Table 3). Because the error in the FDM
approximation will decrease when less subsystems are treated
frozen, the error in the molecule-wise method is smaller than
in the subsystem-wise method.

Another important error factor in the FDM approximation
are buffer atoms. Note that in our implementation subsystems
are only rediagonalized when core atoms are perturbed. Since
subsystems overlap, there may be subsystems in which only
buffer atoms are perturbed. For the molecule-wise method these
subsystems will predominantly occur for simulations in which
a small number of molecules were perturbed per step. Luckily,
the resulting error was small, since only a small perturbation
was applied to a very small fraction of these subsystems (the
chance that a subsystem contains multiple perturbed atoms is
quite small). For a larger number of perturbed molecules per
step, the relative occurrence of these subsystems decreases, since
the chance that a subsystem contains multiple perturbed atoms,
including core atoms, increases.

For the subsystem-wise method, all perturbations were
performed on the core molecules of randomly picked sub-
systems. Since these cores are made up from molecules that
are geometrically close together, the chance that neighboring
subsystems will have multiple perturbed buffer atoms becomes
relatively large. This means that the error introduced by
subsystems in which only buffer atoms were perturbed is larger
than in the molecule-wise method. Moreover, the relative
number of these subsystems does not decrease with an increasing
number of perturbations per step, since a subsystem has either
all core atoms perturbed, or none. To minimize this error, we
implemented a strategy in which subsystems were also redi-
agonalized when buffer atoms were perturbed. Although the
error was decreased to∼0, we also noted that this strategy
essentially eliminated the key benefit of the FDM approxima-
tion: speed-up. No speed-ups were observed when using this
algorithm and further investigation of its use was stopped as a
result.

In contrast with the error, speed-up is a simple function of
the percentage of frozen subsystems. Since the subsystem-wise
method perturbs all the core molecules of randomly picked
subsystems at once, every subsystem will only be diagonalized
once per cycle. In the molecule-wise method, some subsystems
will be diagonalized more often, since the core molecules may
be perturbed in more than one step. This is the reason why the
subsystem-wise method is usually faster than the molecule-wise
method.

Table 4 shows the observed speedups for the rotation/
translation steps for the two different Monte Carlo methods
(molecule-wise and subsystem-wise). Speed-ups vary between
1.2 and 12.4, depending on the number of frozen subsystems.
Note that the percentage of frozen subsystems decreased in these
production runs compared to the error analysis runs, since more
diagonalizations were performed after a configuration was
rejected. Figure 8 shows a plot of the speed-up against the

TABLE 3: Errors in the Electronic Energy (kcal/mol) for
the FDM Simulations (Errors Are Reported as Total Errors
for the 64-Water System)

n/sa nc
b

no. of
config

%
frozen

av
errorc

max
errorc % < kTd 90%<e

n ) 1 64 64 96.9 0.0600 0.7240 98.4 0.1244
n ) 2 32 64 93.8 0.1157 0.8056 96.9 0.2325
n ) 4 16 64 87.7 0.1836 0.8184 96.9 0.3998
n ) 6 11 66 82.5 0.2164 1.0432 92.4 0.4785
n ) 8 8 64 76.4 0.2912 1.5992 90.6 0.5904
n ) 16 4 64 54.2 0.3054 1.8539 88.9 0.6234
n ) 32 2 64 23.0 0.2966 1.2241 96.7 0.5488
s ) 1 32 66 97.0 0.1234 1.8197 98.5 0.2075
s ) 2 16 64 93.9 0.2579 2.3775 95.3 0.4294
s ) 3 11 66 90.9 0.2482 1.3478 95.5 0.4695
s ) 4 8 64 87.9 0.4829 2.4968 75.0 1.1257
s ) 8 4 63 75.8 0.7636 3.2731 61.9 1.8117
s ) 16 2 61 51.5 1.1141 2.9776 21.3 2.1684

a The number of molecules perturbed per step in the molecule-wise
method (n), or the number of subsystems perturbed per step in the
subsystem-wise method (s). b The rounded number of rotation/transla-
tion steps per cycle.c Only unsigned errors are reported.d Percentage
of configurations with errors less thankT. e Maximum error for the
90% lowest error configurations.
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percentage of subsystems that were frozen. From this figure it
can be seen that the speedup is nonlinear. This nonlinearity is
caused by the formal cubic expense of the diagonalization
routine. Speedups for small Monte Carlo moves (perturbation
of 1-6 molecules or 1-3 subsystems per step) are limited by
the time spent in building the Fock matrix (see Table 5).
Construction of this matrix cannot be sped up by the FDM
approximation and contributes a constant factor to the SCF time.
For larger Monte Carlo moves, the percentage of the SCF time
spent in building the Fock matrix reaches the non-FDM
percentage.

Table 6 compares the two FDM Monte Carlo methods by
combining timings and results of the speed-up and error
analyses. For a large number of rotation/translation steps per
cycle, i.e., the perturbation of a small number of molecules (2-
6) or subsystems (1-3), it is best to perform a subsystem-wise
Monte Carlo simulation. Speed-ups and timings were almost a
factor of 1.5 better while the errors were similar for both
methods. For a smaller number of rotation/translation steps per
cycle, the molecule-wise Monte Carlo is preferred. The speed-
up difference was smaller for these cases, but the error in the
subsystem-wise Monte Carlo was larger than that observed for
the molecule-wise Monte Carlo simulation.

Conclusions

The FDM-DC method is a powerful approach that signifi-
cantly decreases the computation time required in a DC
calculation. The method keeps part of the system frozen; i.e.,
the Fock matrix and density matrix describing this subsystem
are updated less frequently than for the rest of the system. In
this paper, we have demonstrated the performance of this
approach in terms of reducing CPU times in DC calculations,
but it does have one drawback. The amount of memory required
to store the eigenvectors and eigenvalues increases greatly with
system size. For the peptide systems studied herein we were
able to run them on a machine with only 128 MB of RAM
(peptide system uses∼15 MB), and the 64-water simulations
were performed on a large memory machine (2 GB) and used
∼500 MB. For much larger systems (e.g.,∼60 residues
surrounding an active site of a protein), much larger amounts
of RAM will be required (∼2 GB for the example system). A
disk-based procedure (i.e., saving the coefficients and eigen-
values on disk and reading them in) could be used but in core
storage is clearly the preferred approach.

We have found that atoms in frozen subsystems may be either
fixed or allowed to change their coordinates. We tested both
strategies in our MD simulations of anR-helical 1-N-acetyl-
octaalanine-N-methylamide. Both methods resulted in significant
speed-ups, while introducing only a minor error. However,
physically it was more advantageous to update the coordinates
of all atoms at every step in a molecular dynamics simulation.
Moving the frozen atoms without updating the Fock matrix

TABLE 4: Speed-up for the Rotation/Translation Steps of
the FDM-DC MC Simulations

n/sa speed-up % frozenb n/sa speed-up % frozenb

n ) l 12.4 95.2 s ) 1 11.8 92.1
n ) 2 8.3 90.9 s ) 2 7.3 84.0
n ) 4 5.0 81.2 s ) 3 5.1 76.5
n ) 6 3.8 71.8 s ) 4 4.1 69.0
n ) 8 3.0 63.8 s ) 8 2.3 49.0
n ) 16 2.0 39.4 s ) 16 1.2 17.5
n ) 32 1.7 15.8

a The number of molecules perturbed per step in the molecule-wise
method (n), or the number of subsystems perturbed per step in the
subsystem-wise method (s). b The percentage of subsystems that were
treated frozen in the FDM simulation.

Figure 8. Speed-ups for the FDM-DC-MC simulations compared to
the non-FDM-DC-MC simulations plotted against the percentage of
subsystems that were treated frozen. Solid line marked withn is the
speedup for the molecule-wise MC, and the dotted line marked withs
is the speed-up for the subsystem-wise MC.

TABLE 5: Percentage of SCF Time Spent in Building the
Fock Matrix

n/sa
% Fock,

non-FDMb
% Fock,
FDMc n/sa

% Fock,
non-FDMb

% Fock,
FDMc

n ) 1 2.2 26.0 s ) 1 2.2 25.3
n ) 2 2.2 17.9 s ) 2 2.1 15.2
n ) 4 2.1 10.6 s ) 3 2.1 10.9
n ) 6 2.1 7.8 s ) 4 2.1 8.6
n ) 8 2.1 6.3 s ) 8 2.1 4.8
n ) 16 2.1 4.2 s ) 16 2.2 2.8
n ) 32 2.2 3.5

a The number of molecules perturbed per step in the molecule-wise
method (n), or the number of subsystems perturbed per step in the
subsystem-wise method (s). b The percentage of SCF time spent in
building the Fock matrix for the rotation/translation steps in a non-
FDM DC MC simulation.c The percentage of SCF time spent in
building the Fock matrix for the rotation/translation steps in a FDM
DC MC simulation.

TABLE 6: Comparison of the Molecule-Wise and
Subsystem-Wise FDM-MC Methodsa

molecule-wise subsystem-wise

nc n tc sS eav ekT s tc ss eav ekT

32 2 248.9 8.3 0.1157 96.9 1 180.9 11.8 0.1234 98.5
16 4 218.5 5.0 0.1836 96.9 2 159.7 7.3 0.2579 95.3
11 6 205.3 3.8 0.2164 92.4 3 150.9 5.1 0.2482 95.5
8 8 195.4 3.0 0.2912 90.6 4 145.1 4.1 0.4829 75.0
4 16 153.2 2.0 0.3054 88.9 8 157.4 2.3 0.7636 61.9
2 32 94.3 1.7 0.2966 96.7 16 137.9 1.2 1.1141 21.3

a The definitions of the abbreviations used in this table are as
follows: nc ) the rounded number of rotation/translation steps per cycle;
n ) the number of randomly picked molecules per step;tc ) the average
time per cycle in sec. for the rotation/translation steps;ss ) speed-up
per rotation/translation step compared to a non-FDM simulation;eav

) the average total error in electronic energy in kcal/mol;ekT ) the
percentage of configurations with total unsigned error in electronic
energy less thankT in kcal/mol; s ) the number of randomly picked
subsystems per step.
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every step introduces some error, but, again, our calculations
show that this error was rather small. In particular, the errors
incurred were a lot smaller than the errors given by the QM/
MM method.

Updating the coordinates of all atoms, at every time step,
becomes even more important when this FDM-DC is used, for
example, in molecular dynamics simulations of enzymes and
other macromolecules in aqueous solution. In such simulations
the active site of the enzyme could be treated with a “full” DC
quantum mechanical calculation, while the area surrounding the
active site region could be treated with the help of FDM-DC
approach. Making the update frequency of the frozen density
matrix region a function of distance from the active site will
allow one to speed up the calculation without significantly
affecting the active site dynamics and energetics. Finally, atoms
that are far enough from the active site could then be treated
with classical molecular mechanics methods as in a standard
QM/MM simulation. Using this strategy will remove the
perturbative effect of the MM region away from the critical
active site region.

A method in which the coordinates of frozen subsystems
remain fixed is the FDM-DC Monte Carlo method. Here the
computational advantage of the FDM approximation is based
on the fact that only a part of the system is changed during a
Monte Carlo step. The FDM approximation speeds up the
computation time of a DC Monte Carlo simulation significantly,
introducing an error underkT for a system of 64 waters. It is
computationally advantageous to perturb the system subsystem-
wise when a large number of rotation/translation steps per cycle
is desired. Simulations where a small number of rotation/
translation steps per cycle are used requires the use of the
molecule-wise approach in order to reduce the error in electronic
energy.

In summary, the FDM-DC approach gives a significant
speedup in both the DC-MD and the DC-MC simulations.
Speed-up is limited by a couple of factors. First, in going from
non-FDM to FDM calculations, the number of diagonalization
steps increases slightly in order to reach convergence. Second,
the FDM approach does not speed up the Fock matrix build
step which accounts 11% of the SCF time for the peptide system,
and 3-25% of the SCF time for the water system. At the same
time, building the Fock matrix does not dramatically limit the
advantages of the FDM method because it can be sped up with
parallelization.
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